Appearance
Platform Architecture
Overview of the Zeron platform architecture and service integration.
High-Level Architecture
┌─────────────────────────────────────────────────────────────┐
│ Zeron Platform │
└─────────────────────────────────────────────────────────────┘
│
┌───────────────────┼───────────────────┐
│ │ │
▼ ▼ ▼
┌──────────────────┐ ┌──────────────┐ ┌──────────────────┐
│ Conductor │ │ Feedback │ │ Dashboard │
│ (TypeScript) │ │ Service │ │ (Python) │
│ │ │ (TypeScript)│ │ │
│ - Jira Polling │ │ - Multi- │ │ - Analytics │
│ - Agent Spawn │ │ tenant │ │ - Visualization │
│ - Validation │ │ - AI Chat │ │ - Monitoring │
│ - Metrics │ │ - Widgets │ │ │
└──────────────────┘ └──────────────┘ └──────────────────┘
│ │ │
└───────────────────┼───────────────────┘
│
┌───────────────────┼───────────────────┐
│ │ │
▼ ▼ ▼
┌──────────────────┐ ┌──────────────┐ ┌──────────────────┐
│ Redis │ │ PostgreSQL │ │ Neo4j │
│ (State/Cache) │ │ (Relational)│ │ (Graph) │
└──────────────────┘ └──────────────┘ └──────────────────┘Service Breakdown
Conductor Service
Purpose: AI-Native Development Orchestrator
Key Components:
- Multi-Project Conductor (
src/multi-project-conductor.ts) - Agent Manager (CLI & SDK modes)
- Redis State Management
- Jira Integration
- Budget Tracking
- Worker Pool (parallel processing)
Data Flow:
- Poll Jira for "Ready for Dev" tickets
- Build context (ticket + learnings + checklist)
- Spawn builder agent (Claude Code)
- Validate implementation
- Spawn reality validator
- Update Jira with results
- Capture learnings
Feedback Service
Purpose: Multi-tenant feedback management with AI conversations
Key Components:
- API Backend (
packages/api/) - Frontend Client (
packages/feedback-client/) - Prisma ORM
- LLM Router Bridge
- Widget System
Data Flow:
- Widget embedded in client site
- User submits feedback
- Stored in PostgreSQL
- AI conversation initiated
- LLM routing (Anthropic/OpenAI)
- Semantic search with pgvector
- Analytics and reporting
Dashboard
Purpose: Business intelligence and visualization
Key Components:
- Streamlit App (
dashboard/app.py) - Components (
dashboard/components/) - Utils (
dashboard/utils/)
Data Sources:
- Neo4j: Graph data
- PostgreSQL: Feedback data
- Redis: Real-time metrics
- Conductor: Development metrics
Data Layer
Neo4j (Graph Database)
Use Cases:
- Knowledge graph representation
- Entity relationships
- Discovery engine data
Configuration:
- Port: 7474 (HTTP), 7687 (Bolt)
- Docker containerized
- APOC plugins enabled
PostgreSQL (Relational)
Use Cases:
- Feedback service data
- User/project management
- Embeddings (pgvector)
Features:
- Prisma ORM
- Vector similarity search
- Multi-tenant isolation
Redis (In-Memory)
Use Cases:
- Conductor state management
- Job queues
- Caching layer
- Session storage
Persistence:
- AOF (append-only file)
- RDB snapshots
- Hourly backups
AI/LLM Layer
Claude Agent SDK
Purpose: Headless agent spawning for Conductor
Flow:
- Conductor builds agent context
- SDK spawns Claude Code instance
- Agent executes development work
- Returns manifest/results
- Fresh validator instance tests
LLM Router
Purpose: Unified AI provider interface
Providers:
- Anthropic Claude (primary)
- OpenAI GPT (alternative)
Features:
- Prompt caching
- Token optimization
- Cost tracking
- Fallback handling
Integration Points
Conductor ↔ Jira
Integration: REST API + custom fields
Data Exchange:
- Poll tickets:
GET /rest/api/3/search - Update status:
POST /rest/api/3/issue/{id}/transitions - Store manifest:
customfield_10051 - Store validation:
customfield_10050
Feedback Service ↔ OrderDay
Integration: Cross-origin widget embedding
Data Exchange:
- Widget JavaScript bundle
- CORS-optimized API
- Real-time feedback submission
- AI conversation responses
Conductor ↔ GitHub
Integration: gh CLI
Operations:
- PR creation
- PR status checks
- Branch management
- Commit history analysis
Security Architecture
Authentication
- JWT tokens (feedback service)
- API keys (external integrations)
- Environment variables (secrets)
Multi-Tenancy
- Organization-level isolation
- Project-level isolation
- Row-level security (PostgreSQL)
CORS
- Configured per service
- Widget-specific allowlists
- Credential handling
Deployment Architecture
Production Services
Vercel (Edge Network)
├── Feedback Service API
├── Feedback Client
└── Public Website
Self-Hosted
├── Conductor
├── Dashboard
├── Neo4j (Docker)
└── RedisInfrastructure
- Docker Compose: Local development
- Vercel: Production web services
- GitHub Actions: CI/CD (future)
Monorepo Structure
zeron/
├── conductor/ # Development orchestration
├── feedback-service/ # Feedback management
├── dashboard/ # BI interface
├── public-website/ # Marketing site
├── learning-service/ # AI learning
├── discovery-engine/ # Data collection
├── nexus/ # Knowledge graph
├── prisma/ # Shared schema
└── scripts/ # AutomationScalability Considerations
Conductor
- Worker pools for parallel processing
- Git worktrees for isolation
- Redis for distributed state
Feedback Service
- Multi-tenant PostgreSQL
- Connection pooling
- Serverless functions (Vercel)
Dashboard
- Streamlit caching
- Lazy data loading
- Pre-computed metrics
Monitoring & Observability
Conductor Dashboard
- Real-time ticket status
- Cost tracking
- Lean metrics
- Activity logs
Logging
- Winston (structured logging)
- Service-specific log files
- Error tracking
Metrics
- Cycle time
- Lead time
- First-pass success rate
- Cost per ticket
- WIP tracking
Future Architecture Considerations
- [ ] Central API Gateway
- [ ] Event-driven architecture (message bus)
- [ ] Microservice authentication (OAuth2)
- [ ] Distributed tracing
- [ ] Centralized logging (ELK stack)
- [ ] Container orchestration (Kubernetes)
